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A primer on PCT for computer modelers 
 
Unedited posts from archives of CSG-L (see INTROCSG.NET): 
 
 
Date: 09 Nov 1992 10:25:31 -0700 
Subject: Primer for modelers: draft 
 
              Experimenting with the control paradigm 
                  A primer for computer modelers 
                       DRAFT: William T. Powers 
 
      PART I: PROPERTIES OF A SIMPLE STABLE CONTROL SYSTEM 
 
The following is intended to introduce programmers and control-system 
engineers to the terminology and architecture of control theory as used under 
the name PCT, or perceptual control theory. For those who have experience with 
modeling control systems, there are some readjustments to be made, because we 
will divide the system into functions in a way that is not standard in control 
engineering. For example, the output of the control system is not the 
controlled variable, but is an influence on the controlled variable. If the 
controlled variable were defined as the rotational speed of a motor, the 
output of the control system would be the torque applied to the motor 
armature, not the speed. The speed would be classified as an INPUT quantity, 
because it is this quantity that is sensed by a tachometer, and that can be 
disturbed by variables in the environment such as friction and loads. We 
define torque as the output because torque depends only on the output of the 
control system -- the current going through the motor -- and is not subject to 
disturbance by the environment. If you are an engineer it will take some 
effort to reorganize your thinking in this new way, but even in control 
engineering you might find that there are some considerable benefits in doing 
so. The normal way of presenting control processes to students is rather 
disorganized; the PCT organization brings in a standard approach that often 
makes control problems easier to solve. 
 
The aim here is to develop some insights into the properties of control 
systems, not through complexity but through simple examples and hands-on 
experience. Watching computer simulations work is the next best thing to 
seeing a real control system work; in some ways it is superior because you 
have time to see the details of what is going on. Rather than exhort the 
reader to run these programs on a computer and examine the results, I have 
decided to make it necessary to do this by not presenting any numerical or 
graphical tables. You will have to run the program to see what this discussion 
is about. Perhaps frustration will prove to be an effective motive for 
actually experiencing this simulation in operation. 
 
              Suggestions for standard terminology 
 
A function is a physical device with an output signal the magnitude of which 
can be computed from the state of its input magnitudes. All functions are true 
mathematical functions: that is, they may have multiple inputs (arguments) but 
they produce only one output (value of the function given those arguments). 
Thus the term function refers both to some physical element of the system and 
to the equivalent mathematical function that describes the dependence of its 
output on its input(s) in terms of magnitudes. 
 
A generic control system consists of an input function, a comparator, and an 
output function. The output of one function generates a variable that is an 
input to another function. Such information- carrying variables inside the 
system are called signals. A signal not only represents the value of the 
function, but serves to carry that value to the input of another function in a 
different physical location. All signals have a single measure, magnitude. The 
name of a signal identifies a pathway; the value of the signal indicates the 
momentary magnitude of the signal carried unidirectionally by that pathway. 
 
The environment model 
 
In the environment of a control system the variables are called quantities. 
The output of the output function is measured in terms of an effect on a 
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physical variable called the output quantity. The output function in a model 
of a single control system interacting with an environment is therefore a 
transducer: its input is a signal while its output is a quantity. The output 
quantity is always defined so that its magnitude depends only on the output 
function's value: it is always a single variable. If it has multiple effects 
in the environment, each of those effects must be separately indicated in a 
model of the environment. 
 
The input to the control system is another physical variable called the input 
quantity. The input function senses the state of the input quantity and 
converts it to a perceptual signal. The input function is also a transducer in 
a single system-environment model; its input is a physical quantity and its 
output is a signal. An input function may respond to multiple input 
quantities. 
 
In the environment, there is a feedback link connecting the output quantity to 
the input quantity. This link is called the environmental feedback function, 
or simply the feedback function. 
 
Also in the environment there is a link through which independent 
environmental variables called disturbing quantities act on the input quantity 
concurrently with the action of the output quantity on the input quantity. 
Because the number and kind of disturbing quantities is immaterial, it is 
customary, when modeling a single control system, to represent all disturbing 
quantities and their individual links to the input quantity as a single 
equivalent disturbance acting through a single equivalent disturbing function. 
 
The control system model 
 
The perceptual signal generated by the input quantity enters a comparator; 
also entering the comparator is a reference signal, an independent variable. 
Where possible, the signs of various system constants are chosen so that the 
reference signal has a positive effect on the comparator while the perceptual 
signal has a negative effect. The comparator is a function with two arguments 
and a single value. The output value is represented by an error signal, the 
magnitude of which is equal to the reference signal's magnitude minus the 
perceptual signal's magnitude. The error signal enters the output function. 
Often, as shorthand, we speak of subtracting one signal from another, or 
adding signals together. What is meant is that the magnitudes are subtracted 
or added. The system-environment diagram 
 
                       sr 
             sp        +|      se 
          -----------> (fc)-----------> 
         |           -                 |    CONTROL 
        (fi)                          (fo)   SYSTEM 
-------  | --------------------------- | ------------- 
        qi <-----------(ff)<--------- qo   ENVIRONMENT 
         ^ 
         | 
        (fd) 
         ^ 
         | 
        qd 
 
DEFINITIONS: 
 
Signals: 
sp = perceptual signal 
sr = reference signal 
se = error signal 
 
Functions: 
fi = input function 
fc = comparison function or comparator 
fo = output function 
ff = feedback function 
fd = disturbance function 
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Quantities: 
qi = input quantity 
qo = output quantity 
qd = disturbing quantity 
 
THE CONTROL EQUATIONS: 
 
System: 
sp = fi(qi) 
se = sr - sp 
 
Interface transducers: 
qo = fo(se) 
sp = fi(qi) 
 
Environment: 
qi = ff(qo) + fd(qd) 
 
Combined equations: 
System: qo = fo(sr - fi(qi)) 
Env:    qi = ff(qo) + fd(qd) 
 
                  Setting up a working model 
 
The following discussion assumes that you know a programming language like C, 
Fortran, Pascal, Modula, or Basic. The actual programming involved is elementary. 
The student is advised to write the simplest program possible in the most 
familiar language and experiment with it. The most important knowledge to be 
gained is a feel for the relationships among variables in a control system, and 
for the effects of changing various system parameters. There is a temptation to 
tackle some interesting and complex problem first, but without a strong intuitive 
foundation for designing more complex systems the most likely result will be 
confusion and failure. Control systems do many surprising things and the effects 
of changes in the parameters are seldom what you would initially guess. 
 
The simplest control system to model on a digital computer is one in which all 
the functions are simple proportionalities except the output function, which 
is an integrator. Alternatively, the feedback function or the input function 
can be made into an integrator; however, only one function should be an 
integrator and the rest should be proportional multipliers. We will use a 
design with an integrator in the output function; you can experiment with the 
other possibilities. 
 
In computer programs, integration is summation. Because this is a closed-loop 
system, integrations do not need to be precise, so advanced methods of 
numerical integration are not needed. If we make the output function into an 
integrator, the program step for computing output becomes (in C notation) 
 
qo = qo + ko*se*dt; 
 
where ko is an integration factor determining how much the output will change 
on each iteration for a given magnitude of error signal. The constant dt 
defines the physical time represented by one iteration of the program -- it 
should be set to 0.1 or 0.01 initially, implying that you should use floating 
point variables. We will use 0.1 sec. 
 
The central part of a C program for implementing a control system would then 
be (starting with the computation of the perceptual signal sp): 
 
sp = ki*qi; 
se = sr - sp; 
qo = qo + ko*se*dt; 
qi = kf*qo + kd*qd; 
 
The disturbing, input, and feedback functions are replaced by constants kd, 
ki, and kf. For initial experimentation they can all be set to 1. Two 
variables have to be initialized before the first time this series of steps is 
used: qi and qo. Initializing to zero is sufficient. Two independent variables 
must also be set, sr and qd. Using these variables is described below. 
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The diagram with constants in place of the general functions: 
 
                        sr 
              sp        +|      se 
           -----------> (fc)-----------> 
          |           -                 | 
          ki                       ko*integral(se) 
          |                             | 
          |                             |  CONTROL SYSTEM 
--------  | --------------------------- | ------------- 
         qi <------------kf<---------- qo   ENVIRONMENT 
          ^ 
          | 
          kd 
          ^ 
          | 
         qd 
 
 
The general flow chart of the program 
 
1. Initialize variables qo and qi. 
 
2. Input or set constants ki, kf, kd, and ko. 
 
3. Input or set the values of the reference signal sr and the disturbing 

quantity qd. 
 
4. Execute the four program steps above. 
 
5. Plot or print the values of variables of interest. 
 
6. Return to step 4 until the desired number of iterations is finished. If 

dt = 0.1, 25 iterations will show 2.5 seconds of behavior. 
 
An alternative is to pre-record an array of values for the reference signal or 
the disturbing quantity or both, and step through this array as the iterations 
proceed. In that case step six would involve returning to step 3, and step 3 
would advance pointers to the arrays of values for sr or qd or both. Below we 
will use still another way of showing the effects of changes in sr and qd. 
 
           Exploring a control system using the model 
 
/* A SAMPLE PROGRAM IN C: */ 
 
#include "stdio.h" 
 
void main() 
 { 
float sp = 0.0,sr = 20.0,se = 0.0,qo = 0.0,qi = 0.0, qd = 0.0; 
float kd = 1.0,ki = 1.0,ko = 8.0, kf = 1.0, dt = 0.1; 
int i; 
 
/* you may put statements here to input values of the k-constants */ 
printf("\n"); 
 for(i=0;i<25;++i) 
  { 
   if(i > 12) qd = 10.0; else qd = 0.0; 
   qi = kf*qo + kd*qd; 
   sp = ki*qi; 
   se = sr - sp; 
   qo = qo + ko*se*dt; 
   printf( 
   "\x0d\x0a qd=%6.2f qi=%6.2f qo=%6.2f sp=%6.2f sr=%6.2f se=%6.2f", 
   qd,qi,qo,sp,sr,se); 
  } 
 (void) getch(); /* pause to view; press key to exit */ 
} 
------------- 
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In this program, the disturbance remains at zero for the first 12 iterations, 
and then jumps to 10.0 for the last 13. The resulting table will just fill the 
screen. You will see the input quantity and perceptual signal rise quickly to 
20 units, to equal the reference signal's setting, and then briefly be 
disturbed when the disturbing quantity changes from 0 to 10. The perceptual 
signal sp will then return within half a second (5 iterations) to the 
reference value again. 
 
Illuminating experiments with the program 
 
There are several basic rules of thumb that can be demonstrated with this 
program. The first is the maxim that control systems control their own 
perceptual signals, not the input quantity and not their own outputs. 
 
First, run the program and note that the perceptual signal sp, the input 
quantity qi, and the output quantity qo all rise to 20.0 just before the 
disturbance enters. Note that after the disturbance appears, the output drops 
from 20.0 to 10.0 units; this is because the disturbance is trying to make the 
perceptual signal too large; the output automatically drops by the amount 
needed to bring the perceptual signal sp back down to 20.0. The control system 
clearly does not control to produce a specific output. The output quantity 
changes as the disturbing quantity changes. 
 
Because the input function is a multiplier of 1, the input quantity qi and the 
perceptual signal sp are numerically equal. Change the input constant ki from 
1.0 to 0.5 and compile and run the program again (to save time you may want to 
insert some lines to read in ki, kf, ko, and kd from the keyboard). 
Intuitively one might expect that halving the input sensitivity would halve 
the perceptual signal. But this is a closed-loop system, and that is not what 
happens. 
 
The perceptual signal still rises to match the reference signal's value of 
20.0, although more slowly than before. The input quantity, however, rises 
nearly to 40. It must do this because we have reduced the effect of the input 
quantity on the reference signal -- the input quantity must be greater to 
produce the former amount of perceptual signal. This shows that changing the 
input function alters the input quantity, but does not alter the perceptual 
signal's final value. Note also that the output quantity has risen to 40.0 
units, as it must do to bring the perceptual signal to the reference value of 
20.0. The control system treats a change in the input function as just another 
disturbance, and alters its output to counteract the change in the perceptual 
signal. Both the output quantity qo and the input quantity qi are altered by 
this change in parameter, but the final value of the perceptual signal sp is 
not altered. 
 
Now restore the input constant ki to 1.0, and change the feedback constant kf 
to 0.5. Note that the output quantity now becomes 40 instead of 20 as before, 
while the perceptual signal still rises to the same value as the reference 
signal, 20.0 units. This shows that changes in the feedback function will 
change the final value of the output quantity, but not the final value of the 
input quantity or perceptual signal. 
 
Finally, if you alter the output integration factor ko, you will see a change 
in the speed with which errors are corrected, but the final states of all the 
variables are unaffected. CAUTION: keep the product ko*kf*ki*dt less than 1.0. 
If you make it equal to 1.0 or larger, a computer artifact will be introduced 
and the system will become unstable. You can try it to see what "unstable" 
means, but this is not true instability. It's caused by the fact that we're 
simulating a continous system on a digital computer. On an analogue computer 
this kind of instability would not happen, because "dt" is infinitesimal. 
 
The integration factor is initialized to 8.0. If you use smaller values, the 
computation will remain stable. 
 
To sum up, when we change the disturbance, the input function, the feedback 
function, or the output function, the perceptual signal always returns to a 
match with the reference signal as long as the control system is still 
working. The only variable that remains under control under all these changes 
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in conditions is the perceptual signal. That is why we say that control 
systems control their own perceptual signals and not their outputs. They can 
be said to control their input quantities only if the form of the input 
function does not change. 
 
You may have noticed that when you alter a function, the resulting change in 
the final state of the system variables is not at the output of that function 
but at the input. Changing the input function ki does not alter the final 
value of the output of that function, sp, but the input to that function, qi. 
Changing the feedback function kf does not alter the quantity qi, but the 
quantity qo at the input of the feedback function. Causation appears to be 
working backward. Furthermore, the effect of a change is opposite to the 
direction of the change. By halving ki, we caused the final value of qi to 
double; by halving the feedback factor kf, we caused the final value of qo to 
double. 
 
These strange reversals of causation are typical of control systems, and 
account for most of the difficulty people have in understanding how different 
control systems are from straight-through systems in which causation works in 
the direction we expect. Of course causation has not really been reversed 
here, but the feedback effects make it seem that it has. 
 
Relationship of disturbance to output 
 
Restore ki and kf to 1.0 and ko to 8.0, recompile, and run. When the 
disturbing quantity jumps from 0 to 10.0 in the middle of the run, look at the 
resulting change in the output quantity. It changes from 20.0 to 10.0. This 
relationship is not accidental. The effect of the disturbing quantity on the 
input quantity is just canceled by the change in the effect of the output 
quantity on the input quantity. 10 units of disturbance is canceled by -10 
units of change in the output quantity. 
 
Now double the constant representing the disturbance function (change kd from 
1.0 to 2.0). This doubles the effect of a given change in the disturbing 
quantity on the input quantity. Recompile and run. 
 
As usual, the perceptual signal returns to 20.0 after the disturbance. But 
look at the output quantity: it drops from 20.0 to 0.0 when the disturbance 
turns on. Now a 10-unit change in the disturbing quantity results in a 
negative 20-unit change in the output quantity. The reason? One unit of 
disturbance now has twice as much effect on the input quantity as one unit of 
output from the control system. Result: twice as much output is now needed to 
counteract the same disturbance. That is what happens. It happens not because 
something "knows" that twice as much output is needed, but simply as the 
natural result of the operation of the control system. 
 
The "behavioral illusion" 
 
If we consider just the disturbing quantity and the output quantity, we can 
see that there is an apparent direct relationship between them. It looks as 
though changing the disturbing quantity causes the output quantity to change. 
If we didn't know about the input quantity qi, we might well think that the 
system was sensing the disturbing quantity directly, and responding by 
altering its output quantity. It looks as if a change in the disturbing 
quantity is a stimulus, which causes a response in the form of a change in the 
output quantity. 
 
Of course we can see that this relationship holds only because of the input 
quantity and the fact that the perceptual signal is being maintained at a 
particular value. The apparent stimulus would alter the input quantity if it 
were the only influence. But it does not alter the input quantity (for long) 
because the output changes to have an equal and opposite effect on the input 
quantity. That is the true explanation of the relationship between the remote 
disturbing quantity and the output action of the system. The appearance of 
stimulus and response is an illusion. There can be, of course, true stimulus-
response organizations. But an apparent stimulus-response relationship is an 
illusion when the behaving system is really a control system. Effect of the 
reference signal 
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Right after the bracket following the "for" statement, insert this line of 
code: 
 
if(i>5 && i < 20) sr = 20.0 else sr = 5.0; 
 
Recompile and run. Now the reference signal begins at 5.0, and rises to 20.0 
halfway through the first part of the run. Then the disturbance is turned on. 
Halfway through the second part of the run, with the disturbance still 
present, the reference signal returns to 5.0. 
 
Just follow the behavior of the perceptual signal. You will see that it rises 
quickly to 5.0, then rises again to 20.0 before the disturbance occurs. When 
the disturbance rises to 10.0 there is a brief excursion of the perceptual 
signal which immediately returns to 20.0. Then when the reference signal drops 
to 5.0 again, so does the perceptual signal. 
 
In fact, the perceptual signal tracks the reference signal in terms of 
magnitude. The reference signal determines the value to which the perceptual 
signal will be brought initially, and at which it will be maintained, even if 
disturbances occur. By varying the reference signal, we can make the control 
system produce physical effects in the environment that result in 
corresponding variations in the perceptual signal. Even if disturbances come 
and go, and even if the feedback function and input function characteristics 
change (over some range), the system will still produce just the output needed 
to control the perception at the specified level. 
 
This is why we identify the reference signal with the commonsense notions of 
intention and purpose. 
 
Dynamic considerations 
 
During the program run, the output quantity of the system becomes whatever it 
must be to keep sp matching sr, for all combinations of qd and sr. Immediately 
after sudden changes in these independent variables there is an error, but the 
error is soon corrected -- sooner if ko is larger. 
 
In real environments, physical variables can't jump instantly from one state 
to another. Normally the changes are smooth; they are also slow enough to 
allow control processes to begin changing before the environmental changes 
have gone to completion. To illustrate this, change the line in the program 
 
   if(i > 12) qd = 10.0; else qd = 0.0; 
 
to 
 
  if(i >= 5 && i < 15) qd = qd + 1; 
 
In C this could be shortened but this will work in all languages. The effect 
is to make the disturbance change smoothly instead of in one jump. 
 
Also, "comment out" the line that alters the reference signal sr, or delete 
it. Compile and run. 
 
Now the perceptual signal sr rises quickly to the default reference level of 
20.0. When the ramp disturbance begins, it rises slightly above 20.0 and remains 
there until the ramp levels out; then it returns quickly to 20.0 again. You will 
notice the output quantity changing during the change in the disturbance. 
 
If you reduce ko to slow the system, you will find that the ramp disturbance 
has a greater effect. The amount of effect that a disturbance has depends on 
how rapidly it changes in comparison with the control system's speed of error-
correction. 
 
By reducing the time interval dt to 0.01 and raising ko to 80, you could make 
the control system work 10 times faster and reduce the effect of the 
disturbing ramp by a factor of 10. You would, however, need 10 times as many 
iterations to cover the same period of 2.5 seconds, and this would not fit on 
the screen. If you want to see this effect, change the print statement so it 
prints to the printer, and change the limit of the "for" statement to 250. If 
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you can program graphics, you could plot these variables on the screen and see 
the behavior in much more detail without using 5 pages of paper. 
 
--------------------------- 
 
NOTE: I would appreciate it if programmers versed in BASIC, Pascal, and other 
languages would write versions of the above program, test them, and transmit 
them to me for inclusion in an appendix to this primer. Programs should be as 
generic as possible so as to run on as many computers as possible. I 
especially need versions for mainframes and workstations. In the future I will 
simplify the program and make it easier for the user to change parameters from 
the keyboard. For now, I hope that all programmers and would-be programmers 
will try the program as it stands and learn from it, even if you have to get 
some help from a 14-year-old. As this primer evolves I will post revisions and 
again ask for your help. 
 
Best,  Bill P. 
 
 
Date:     Wed Nov 11, 1992  8:32 am  PST 
Subject:  Re: Primer for modelers: draft 
 
William T. Powers writes: 
 
                Experimenting with the control paradigm 
                    A primer for computer modelers 
                         DRAFT: William T. Powers 
 
[ beginning part deleted ...] 
 
> The simplest control system to model on a digital computer is one in 

which all the functions are simple proportionalities except the output 
function, which is an integrator. Alternatively, the feedback function 
or the input function can be made into an integrator; however, only one 
function should be an integrator and the rest should be proportional 
multipliers. We will use a design with an integrator in the output 
function; you can experiment with the other possibilities. 

 
Why should there be only one integrator? 
 
..stuff deleted... 
 
> NOTE: I would appreciate it if programmers versed in BASIC, Pascal, and 

other languages would write versions of the above program, test them, 
and transmit them to me for inclusion in an appendix to this primer. 
Programs should be as generic as possible so as to run on as many 
computers as possible. I especially need versions for mainframes and 
workstations. In the future I will simplify the program and make it 
easier for the user to change parameters from the keyboard. For now, I 
hope that all programmers and would-be programmers will try the program 
as it stands and learn from it, even if you have to get some help from a 
14-year-old. As this primer evolves I will post revisions and again ask 
for your help. 

 
----------------------------- 
 
Here is a PASCAL-Version of your program. It should work on whatever platform 
.. 
 
program control; 
const kd = 1.0; 
      ki = 1.0; 
      ko = 8.0; 
      kf = 1.0; 
      dt = 0.1; 
 
var   sp, sr, se : real; 
      qi, qo, qd : real; 
      i : integer; 
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begin 
(* initialize variables *) 
   sp := 0.0; 
   sr := 20.0; 
   se := 0.0; 
   qo := 0.0; 
   qi := 0.0; 
   qd := 0.0; 
 
   for i := 0 to 24 do begin 
       if i > 12 then qd := 10.0 else qd := 0.0; 
       qi := kf*qo + kd*qd; 
       sp := ki*qi; 
       se := sr - sp; 
       qo := qo + ko*se*dt; 
 
       write   ('qd = ',qd:6:2,' qi = ',qi:6:2,' qo = ',qo:6:2); 
       writeln (' sp = ',sp:6:2,' sr = ',sr:6:2,' se = ',se:6:2); 
   end; 
   readln; 
end. 
 
-- 
Wolfgang Zocher 
 
 
Date:     Wed Nov 11, 1992  3:04 pm  PST 
Subject:  primer program from Zocher 
 
[From Bill Powers (921111.1230)]     Wolfgang Zocher (921111) 
 
RE: primer for computer modelers 
 
Thanks for the Pascal version, Wolfgang. I will incorporate it, with credit. 
It runs fine under Turbo Pascal -- anybody else out there who can test these 
programs to make sure they work on your system? 
 
I would welcome the efforts of anyone who would like to take my rather verbose 
version of the writeup and make it shorter and better organized. 
 
Also, if someone wants to make the program more user-friendly (but still 
short), feel free: I'll check it out and revise the Primer accordingly. I can 
run C, Pascal, and Qbasic programs. 
 
------------------------ 
 
You ask why there shouldn't be a second integrator. This should go into the 
Primer. The best way to see why not is to put a second integrator into the 
program. 
 
Try this: in place of 
 
       qi := kf*qo + kd*qd; 
 
introduce a dummy variable x, and write 
 
      x := x + kf*qo; 
      qi := x + kf*qd; 
 
You'll have to declare x and initialize it to 0. The variable x represents the 
contribution of the output via the feedback function to the state of the input 
quantity. The feedback function is now an integrator. 
 
How about trying this, and writing back to tell the folks what happened? 
 
(C version: same change, but use = instead of :=). 
 
Best,      Bill P. 
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Date:     Sat Nov 14, 1992  2:13 pm  PST 
Subject:  primer part II 
 
Continuing with the draft version of the modeling primer: 
 
              Experimenting with the control paradigm 
                  A primer for computer modelers 
 
           PART II: Finite gain and leaky integrators. 
 
The model in Part I used a pure integrating output. In real physical systems, 
especially nervous systems, integrators are not perfect; they leak. The 
greater the output of the integrator, the faster it leaks. The result is to 
create the equivalent of an amplifier that multiplies the input by some finite 
number, but takes a while to follow changes in the input. For a step input, 
the output begins to rise as if a pure integrator were present, but instead of 
the output continuing to rise, it levels off at some multiple of the input 
magnitude. 
 
We will look now at the control system of Part I with a leaky integrator for 
an output function. The program now is slightly more complex, in that we will 
plot the values of the variables against time, using a text-mode output on a 
graph that is 80 characters wide and 25 high. 
 
This subject is discussed at some length because it has important implications 
for simulating continuous physical systems on a digital computer. After we 
have finished this section we will be ready to look at some new quantitative 
relationships found in control systems. 
 
New program: 
 
/* primer2.c */ 
 
#include "stdio.h" 
#include "conio.h" 
 
void main() 
 { 
float sp = 0.0,  /* initialize signals and quantities */ 
      sr = 20.0, 
      se = 0.0, 
      qo = 0.0, 
      qi = 0.0, 
      qd = 0.0; 
float kd = 1.0, /* set constants */ 
      ki = 1.0, 
      ko = 100.0, 
      kf = 1.0, 
      dt = 0.1 
      ks = 50.0;  /* slowing factor */ 
int i; 
 clrscr();  /* alternative: for(i=0;i<25;++i) putch(0x0d); */ 
 for(i=1;i<=80;++i) 
  { 
   if(i > 40) qd = 9.0; else qd = 0.0; 
   qi = kf*qo + kd*qd; 
   sp = ki*qi; 
   se = sr - sp;   qo = qo + (ko*se*dt - qo)/ks; 
    gotoxy(i,24 - sr/2.0 - 0.5); putch('r'); 
    gotoxy(i,24 - qd/2.0 - 0.5); putch('d'); 
    gotoxy(i,24 - sp/2.0 - 0.5); putch('p'); 
  } 
 (void) getch();  /* wait for keystroke */ 
} 
 
Notice the changes. We now iterate 80 times, with the index i starting at 1. 
The disturbance qd is zero until the 40th iteration when it rises to 9.0. It 
remains at 9.0 for the rest of the run. With dt = 0.1 sec, the horizontal 
dimension corresponds to 8 sec of real time. 
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                        The slowing factor 
 
A leaky integrator could be made from the integrator of part I: 
 
qo = qo + ko*se*dt 
 
Simply by subtracting an amount proportional to qo on every integration: 
 
qo = qo + ko*se*dt - qo*dt*(LeakFactor). 
 
There is another form equivalent to this that makes it possible to adjust the 
steady-state amplification factor and time constant independently. We will use 
this alternate form for the output function, as follows: 
 
  qo = qo + (ko*se - qo)*dt/ks;  /* dt/ks = slowing factor */ 
 
To understand this function, first consider just the part in the parentheses. 
ko*se is the value that the output qo would have if the error signal se were 
simply multiplied by an amplification factor ko. Subtracting qo from this 
value calculates how far from the current value of qo the final value of the 
output is: this is the change necessary to reach a final state of qo defined 
as ko*se. If we just added (ko*se - qo) to qo, the result would be ko*se -- 
the value of qo on the left would simply be equal to ko*se. 
 
This amount of change, however, is multiplied by dt/ks. If ks, a "slowing 
factor,"  is set equal to dt, then the entire difference between the current 
value of qo and the final value is added to qo, so that qo (on the left of the 
= signal) becomes equal to the final value on the first iteration. If ko*se 
does not change, on the next iteration qo will be equal to ko*se, so the 
difference ko*se - qo will be zero and nothing more will be added to qo during 
later iterations. 
 
On the other hand, if ks is made larger than dt, so dt/ks is less than 1, only 
part of the difference will be added on each iteration and qo will approach 
the value ko*se in a series of diminishing steps. If, for example, ks were 
made equal to 2*dt, then only half the difference would be added on each 
iteration. The output qo would rise toward the limiting value ko*se by going 
half the distance, then half the remaining distance, and so on, on each 
successive iteration. With a one-unit final value, the steps would be 1/2, 
3/4, 7/8, 15/16 ... and so on. To a first approximation, then, the slowing 
factor ks sets the time constant of the output function. If ks is set to 1.0, 
the time constant will be about 10 iterations, because dt is 0.1. In 10 
iterations, the output will go about 2/3 of the way to the final value after a 
step- change in se. 
 
            Loop gain and the optimum slowing factor 
 
In this closed-loop system, the error signal does not remain constant on 
successive iterations. Thus we do not see the actual time constant of the 
output function in the overall behavior of the control system. The control 
system as a whole will show a much shorter time constant than ks would imply. 
In fact, the overall time constant can be reduced to a single iteration of the 
program no matter how long is the time constant in the output function. 
 
Let us first define the loop gain of this system. The loop gain is the product 
-ko*kf*ki: the product of all multiplication constants encountered in one trip 
around the closed loop (starting anywhere). The negative sign is introduced by 
the comparator, where an increase of 1 unit in the perceptual signal produces 
a change in the error signal of - 1 unit (reference signal constant). For 
calculating loop gain we are concerned only with the effects of small changes, 
not the absolute magnitudes of signals and quantities. 
 
It can be shown that the optimum value of dt/ks is simply 1/(1 - loop gain), 
where the loop gain itself is always a negative number. With this value of 
dt/ks, the control system will, after a step-disturbance, reach equilibrium on 
the first iteration of the program. Conversely, for any value of ks there is a 
loop gain that will give the same result. 
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The above program is set up with a loop gain of -100 (ko = 100.0, kf = 1.0, ki 
= 1.0). The optimum value of dt/ks would be 1/101. With dt set to 0.1, the 
optimum ks is 10.1. The program is initialized with ks = 50, or about 5 times 
the optimum value. This should produce a time constant of the whole control 
system of about 5 times the optimum value for reaching equilibrium in one 
iteration; it should therefore take the control system about 5 iterations to 
reach 2/3 of the final value. You can compile the program and run it now to 
see that this is the case. Notice that with an inherent time constant of 50 
iterations in the output function, the overall system has a time constant of 
only 5 iterations. 
 
On the plot, r indicates the reference value, p the perceptual signal, and d 
the disturbance. 
 
Now reduce ks to the optimum value of 10.1, recompile and run, and verify that 
the final value is reached after the first iteration. 
 
Note what happens when the disturbance turns on (where the row of d's suddenly 
jumps upward). The perceptual signal is disturbed upward, above the reference 
signal, for one iteration. Then it returns to the reference value and stays 
there even though the disturbance is still present. If you increase the value 
of ks, you will see that the error correction becomes slower. 
 
                        A digital artifact 
 
If you make ks smaller than dt, you will begin to see a computer artifact. For 
ks in the range between 0.5*dt and dt, the approach to a final state will be 
oscillatory. If ks is even smaller, the oscillations will begin to increase in 
amplitude exponentially; the system will run away. Try a value of ks = 5.5 to 
see the oscillatory approach to a steady state. The nearer you get to 5.0, the 
longer the oscillations will persist. If you reduce ks to or below 5.0, all 
you will see will be a few scattered p's -- the growing oscillations quickly 
carry the trace off the screen. 
 
This is an important phenomenon that shows the limitations of modeling a 
continuous system on a digital computer. The clue that tells you this is a 
computer artifact is simple: the oscillations (when they occur) always have a 
reversal period of one iteration of the program, regardless of the setting of 
ks or dt. The constant dt expresses the meaning of one iteration in terms of 
real time. As long as ks is greater than dt, the time constants of changes 
have physical meaning. But as soon as the oscillations begin, they occur at a 
frequency of exactly one reversal per iteration, however you change ks. That 
frequency has no physical significance. 
 
If you leave the value of ks at 5.0 and change dt to 0.01, you will now see a 
normal exponential rise of sp just as before. It won't be evident from the 
plot, but now the width of the plot represents only 0.8 seconds instead of 8.0 
as before because one iteration now corresponds to 0.01 sec instead of 0.1 
sec. The rise time of the p's is still about 5 iterations (to the 2/3 value), 
but now that corresponds to 0.05 sec or half an iteration with the old value 
of dt. This proves that the model system still behaves normally with small 
values of the time constant (or slowing factor), even though when the same 
model with the same physical parameters is run with a coarser time scale, it 
seems to become unstable. Control systems CAN become unstable. What we see 
here, however, is not instability in the physical system, but only in the 
digital representation of it. 
 
The moral of this story is that when you employ slowing factors you must 
always make sure that ks is greater than or equal to dt. If you need to 
represent a system with a faster rise to asymptote, you must reduce dt. Then 
you can reduce the time constant further by reducing ks as required to match 
the behavior of the real system. We will see later how this kind of analysis 
works when the real system has some actual time delays in it. 
 
                    Things to experiment with 
 
Loop gain is affected by not only by ko, but by kf and ki. You can try varying 
these other constants to see the effect. You will always find that the fastest 
physically meaningful speed of error correction is a single iteration, and 
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that to get this speed you must set kd/ks to 1/(1 + ko*kf*ki). If you want the 
system to have a time constant of x iterations, you simply multiply the 
denominator by x. When you have created a certain time constant in the 
correction of errors due to disturbances, you can then verify that you get the 
same time constant in response to step-changes in the reference signal sr. To 
do this you can crib some lines from primer1.c in Part I. The reference signal 
value is already displayed. If you want to display the error signal, just add 
the line 
 
     gotoxy(i,24 - se/2.0 - 0.5); putch('e'); 
 
... in the appropriate place, and so on for other variables you would like to 
plot. Notice that when two or more variables plot to the same position, only 
the last one to be plotted can be seen. 
 
Best to all,     Bill P. 
 
 
Date:     Sun Nov 15, 1992  9:53 am  PST 
Subject:  Primer part III 
 
Continuing with the draft version of the modeling primer: 
 
              Experimenting with the control paradigm 
                  A primer for computer modelers 
 
                 PART III: The effects of delays. 
 
It is often said among the ill-informed that control systems will not work 
well in organisms because of reaction-time and other delays. In this section 
we will set up a control system with delays in it, first in the output 
function and then in the input function, to see what is required for such a 
system to maintain tight and stable control. 
 
                             Output delay 
 
The program is an extension of the one in Part II: 
 
/* primer3.c */ 
 
#include "stdio.h" 
#include "conio.h" 
 
void main() 
 { 
float sp = 0.0,  /* initialize signals and quantities */ 
      sr = 20.0, 
      se = 0.0, 
      qo = 0.0, 
      qi = 0.0, 
      qd = 0.0; 
float kd = 1.0, /* set constants */ 
      ki = 1.0, 
      ko = 100.0, 
      kf = 1.0, 
      ks = 70.0, 
      dt = 0.1; 
float qo3 = 0.0, /* initialize variables for output delay */ 
      qo2 = 0.0, 
      qo1 = 0.0; 
int i; 
 clrscr();  /* alternative: for(i=0;i<25;++i) putch(0x0d); */ 
 for(i=1;i<=80;++i) 
  { 
   if(i > 40) qd = 9.0; else qd = 0.0; 
   qi = kf*qo + kd*qd; 
   sp = ki*qi; 
   se = sr - sp; 
   qo = qo1; 
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   qo1 = qo2; 
   qo2 = qo3; 
   qo3 = qo3 + (ko*se - qo3)*dt/ks; 
    gotoxy(i,24 - sr/2.0 - 0.5); putch('r'); 
    gotoxy(i,24 - qd/2.0 - 0.5); putch('d'); 
    gotoxy(i,24 - qo/2.0 - 0.5); putch('o'); 
    gotoxy(i,24 - sp/2.0 - 0.5); putch('p');  } 
 (void) getch(); 
} 
 
The delay is put into the output function by the following lines: 
 
   qo = qo1; 
   qo1 = qo2; 
   qo2 = qo3; 
   qo3 = qo3 + (ko*se - qo3)*dt/ks; 
 
The three dummy variables qo1 through qo3 provide a delay of 3 iterations. On 
the current iteration, the value of qo3 is computed just as it was in Part II. 
But this value is passed, on the next iteration, to qo2, then to qo1, and only 
on the third iteration to qo, the actual output quantity. So the output is 
always based on the error signal that existed three iterations, or 3*dt 
seconds, ago. 
 
This is called a "transport lag." The variations in qo follow the variations 
in qo3, but three iterations later. The effect is much like shouting commands 
from one end-zone of a football field to a marching band in the other end 
zone. The marchers follow all the commands in properly-spaced sequence, but 
with a delay of about 0.3 seconds. 
 
It may not be obvious, but in the program of Part II there was already a 
transport lag of dt, one iteration. The effect of a disturbance of the input 
quantity during one iteration did not make its way around the loop to affect 
the input quantity until one iteration later. We saw that it was possible, 
with a delay of 0.1 second, to adjust the system for tight control despite 
this lag. 
 
Now the situation is slightly different. Effects still propagate around the 
loop in one iteration, but the transport lag inserts a delay of 3 iterations 
in the output function alone. In ALL the functions, including the output 
function, there is a new value of input and output calculated on every 
iteration; the output quantity and input quantity can change during the 
transport lag period. Previously nothing at all could happen during the lag of 
one iteration. Now, with a lag of three iterations, the error signal can 
change on every iteration even though the effect on the output quantity is 
delayed by 3 iterations. 
 
Compile and run the program. The appearance is much the same as in Part II, 
but now a "reaction time" is visible. After the initial rise in reference 
signal, the output quantity, represented as an 'o', does not start to rise 
until the fourth iteration, and the perceptual signal starts to rise one 
iteration later. The perceptual signal, a 'p',  then rises smoothly until it 
matches the reference signal. When the disturbance jumps to 9.0 units, the 
perceptual signal is affected immediately. But the output signal, which 
opposes the disturbance, begins to change on the fourth iteration after the 
start of the disturbance. Then the perceptual signal begins to return toward 
the reference signal (some apparent lags are simply due to the coarseness of 
the resolution of the plot). 
 
We have paid one penalty for this transport lag. The slowing factor, which had 
an optimum value of 10.1 in Part II, now must have a value of at least  70 to 
avoid overshoots. This added slowing is required in order to compensate for 
the transport lag and keep the control system stable. If you reduce ks to 
speed up the transitions, the perceptual signal will begin to overshoot and 
undershoot. Try reducing the slowing factor ks in steps of 10. The instability 
will get worse and worse until a runaway oscillation starts and control is 
totally lost. 
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                           Input delay 
 
Now we restore the output lag to zero (or one iteration) and use the same 
mechanism to put a lag into the input function. 
 
/* primer4.c */ 
 
#include "stdio.h" 
#include "conio.h" 
 
void main() 
 { 
float sp = 0.0,  /* initialize signals and quantities */ 
      sr = 20.0, 
      se = 0.0, 
      qo = 0.0, 
      qi = 0.0, 
      qd = 0.0; 
float kd = 1.0, /* set constants */ 
      ki = 1.0, 
      ko = 100.0, 
      kf = 1.0, 
      ks = 70.0, 
      dt = 0.1; 
float sp3 = 0.0, /* initialize variables for perceptual delay */ 
      sp2 = 0.0, 
      sp1 = 0.0; 
int i; 
 clrscr();  /* alternative: for(i=0;i<25;++i) putch(0x0d); */ 
 for(i=1;i<=80;++i) 
  { 
   if(i > 40) qd = 9.0; else qd = 0.0; 
   qi = kf*qo + kd*qd; 
   sp = sp1; 
   sp1 = sp2; 
   sp2 = sp3; 
   sp3 = ki*qi; 
   se = sr - sp; 
   qo = qo + (ko*se - qo)*dt/ks; 
    gotoxy(i,24 - sr/2.0 - 0.5); putch('r'); 
    gotoxy(i,24 - qd/2.0 - 0.5); putch('d'); 
    gotoxy(i,24 - qo/2.0 - 0.5); putch('o'); 
    gotoxy(i,24 - sp/2.0 - 0.5); putch('p'); 
  } 
 (void) getch(); 
} 
 
Compile and run this program. 
 
At the start of the run, when the reference signal is set to 20.0, the output 
immediately begins to rise. Examining the block diagram of the system (Part 
I), you can see that a change in the reference signal shows up immediately as 
a change in the error signal, which drives the output. This change in the 
output, however, is not reflected in the perceptual signal until the fifth 
iteration (it is probably affected on the fourth iteration, but not enough to 
show on the plot). When the disturbance switches to 9.0, the perceptual signal 
does not show the effect for three iterations even though the input quantity 
is immediately affected; then, when this effect does appear in the perceptual 
signal, the output begins to change at the same time. 
 
So there is some difference when the delay is shifted to the input side. But 
control remains just as good as before, and with the same slowing factor of 
70. 
 
                          Sampled Control 
 
Control systems can be designed so that they sample the state of the input at 
intervals instead of continuously. In the final program in this section, we 
use a timer variable t to count iterations. On every fourth iteration, the 
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perceptual signal is set to the appropriate level on the basis of the input 
quantity. Between samples, the perceptual signal simply holds the last sampled 
value. All the other variables in the loop change on every iteration as usual. 
Here is the program: 
 
/* primer5.c */ 
 
#include "stdio.h" 
#include "conio.h" 
 
void main() 
 { 
float sp = 0.0,  /* initialize signals and quantities */ 
      sr = 20.0, 
      se = 0.0, 
      qo = 0.0, 
      qi = 0.0, 
      qd = 0.0; 
float kd = 1.0, /* set constants */ 
      ki = 1.0, 
      ko = 100.0, 
      kf = 1.0, 
      ks = 70.0, 
      dt = 0.1; 
int i,t = 0; 
 clrscr();  /* alternative: for(i=0;i<25;++i) putch(0x0d); */ 
 for(i=1;i<=80;++i) 
  { 
   if(i > 40) qd = 9.0; else qd = 0.0; 
   if(t == 0) 
    { 
     qi = kf*qo + kd*qd; 
     t = 4;    } 
   t = t - 1; 
   sp = ki*qi; 
   se = sr - sp; 
   qo = qo + (ko*se - qo)*dt/ks; 
    gotoxy(i,24); putch('-'); 
    gotoxy(i,24 - sr/2.0 - 0.5); putch('r'); 
    gotoxy(i,24 - qd/2.0 - 0.5); putch('d'); 
    gotoxy(i,24 - qo/2.0 - 0.5); putch('o'); 
    gotoxy(i,24 - sp/2.0 - 0.5); putch('p'); 
  } 
 (void) getch(); 
} 
 
Once again, smooth control is achieved with a slowing factor of 70. Notice 
that while the output quantity changes smoothly, the perceptual signal changes 
in steps, one step on every fourth iteration. Obviously no disturbance can be 
resisted if it occurs during the hold period; the opposing output can only 
begin to change when the next sample occurs. The average delay would be half 
the sampling period. As with all control systems, disturbances can come and go 
too rapidly to oppose. But natural control systems are adapted to the 
environment that exists; most natural disturbances, therefore, can be opposed 
before their effects become important. 
 
Best, Bill P. 
 
 
[From Bill Powers (921120.0830)]   Wolfgang Zocher (direct) 
 
I am VERY interested in your program for assembling control systems using 
modules. If you will send me the source code I'll see if I can get it running, 
and offer any suggestions that seem useful. If we can work out something with 
the required properties, I'll switch to using it in my Primer series. 
 
Bill P. 
 
[For fruits of this collaboration, see PCTdemos: SIMCON directory]. 


